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Die Palladium-katalysierte asymme-
trische allylische Alkylierung (AAA) ist
eine der wirksamsten Methoden zum
Aufbau von Kohlenstoff-Kohlenstoff-
Bindungen an Stereozentren.! Wih-
rend mit weichen Nucleophilen ein ho-
her Grad an Enantioselektivitit erzielt
werden kann, galten ,harte“ Keton-
enolate — bei denen es sich um nicht-
stabilisierte Enolate handelt — bislang
als ungeeignete Substrate, die nur nied-
rige Enantioselektivitdten ermoglichen.
Angenommen wird, dass sie das Palla-
diumzentrum anstatt die r-Allylgruppe
angreifen. Jiingste Studien zur Palladi-
um-katalysierten  decarboxylierenden
AAA (Tsuji-Protokoll) haben nun etli-
che neue Nucleophile fiir diese Reakti-
on erschlossen, insbesondere Keton-
enolate.

Es gibt zwei Hauptsubstratklassen
fir die Palladium-katalysierte decarb-
oxylierende AAA (Schema1). In Ge-
genwart von Palladium(0) reagiert das
allylische [3-Ketocarboxylat 1 durch
oxidative Addition bereitwillig zum
metallgebundenen (-Ketocarboxylat 3,
das anschlieBend decarboxylieren kann
(Carroll-Umlagerung). Im zweiten Fall
reagiert das Vinylcarbonat 2 ebenfalls
durch oxidative Addition zum Palladi-
umvinylcarbonat 4, das erneut durch

[*] Prof. Dr. S.-L. You, Prof. L.-X. Dai

State Key Laboratory of Organometallic
Chemistry

Shanghai Institute of Organic Chemistry
Chinese Academy of Sciences

354 Fenglin Lu

Shanghai 200032 (VR China)

Fax: (- 86)21-5492-5087

E-Mail: slyou@mail.sioc.ac.cn

Wir danken der Chinesischen Akademie
der Wissenschaften fiir grof3ziigige finan-
zielle Unterstiitzung.

[7‘: £

WILEY

nterScience’

o o
G
1
[PdOL?] l 0
M par
30 H o)
)L o M
o)ko‘PdL' )J\/Tk 7
4 o Pl
[PdOL’]T 6
S
OJ\O/\/
2

Schema 1. Die beiden Hauptsubstratklassen
(1 und 2) fiir die Palladium-katalysierte de-
carboxylierende AAA. L* = chiraler Ligand.

Decarboxylierung das Palladiumenolat
liefert. Das Produkt der allylischen Al-
kylierung, 7, wird durch reduktive Eli-
minierung oder nucleophilen Angriff
des Enolats am mn-Allyl-Liganden er-
halten.

Tsuji und Mitarbeiter hatten bereits
1980 bei Versuchen zur intramolekula-
ren allylischen Alkylierung eine Palla-
dium-katalysierte ~ decarboxylierende
Allylierung beobachtet.”) Seitdem wur-
de eine Vielzahl von Substraten gefun-
den, einschlieBlich B-Nitro-, Cyan- und
Trifluormethylketoacetaten.”! Dage-
gen waren asymmetrische Varianten
dieser Reaktion bis vor kurzem nur
wenig erforscht.

Tunge und Burger berichteten
kiirzlich iiber asymmetrische Palladium-
katalysierte decarboxylierende allyli-
sche Alkylierungen mit dem Trost-Li-
ganden 10 (Schema2).! Unter opti-
mierten Bedingungen konnten mehrere
o-unsubstituierte p-Ketoester 8 und 9
durch decarboxylierende AAA in Aus-
beuten von 69 bis 94 % und mit Enan-
tioselektivitidten von 54 bis 98 % ee um-
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Schema 2. Decarboxylierung von a-unsubsti-
tuierten f-Ketoestern. dba= Dibenzylidenace-
ton.

gesetzt werden. Bei den cyclischen
Substraten wurde gefunden, dass gro-
Bere Ringe zu hoheren Enantioselekti-
vitdten fithren.

Stoltz und Behenna fanden, dass die
Decarboxylierung des Allylenolcarbo-
nats 13 ein Keton mit einem quartdren
Stereozentrum in oa-Position ergibt
(Schema 3).! Es wurden mehrere Li-
ganden getestet, wobei der fert-Butyl-
phox-Ligand 14 die hochsten Enantio-
selektivititen lieferte. Mehrere von Cy-
clohexanon abgeleitete Allylcarbonate

o,
o
PPh; N—/
i 14 =
o
0)1\0/\% (6.25 Mol-%) P
SN
[Pda(dba)s] (2.5 Mol-%) é{
THF, 25°C
13 55-96% Ausbeute 15
82-92% ee

OTMS [Pda(dba)s] (2.5 Mol-%)
14 (6.25 Mol-%)
15
Diallylcarbonat (105 Mol-%)
16 TBAT (35%), THF, 25°C

79-99% Ausbeute
81-92% ee

Schema 3. Decarboxylierung von Allylenolcar-
bonaten unter Verwendung des Liganden 14.
TMS =Trimethylsilyl, TBAT = Bu,NPh;,SiF,.
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konnten durch Decarboxylierung in
hohen Ausbeuten (55-96%) und mit
guten Enantioselektivititen (79-92%
ee) zu den Produkten umgesetzt werden.
Umsetzungen des Trimethylsilylenol-
ethers 16 mit Diallylcarbonaten in Ge-
genwart des Palladiumkatalysators 14
und substochiometrischen Mengen an
Bu,NPh;SiF, (TBAT) fiihrten ebenfalls
glatt zu den quartidren Cycloalkanonen.

Murakami und Mitarbeiter berich-
teten, dass die Palladium-katalysierte
asymmetrische Decarboxylierung von
allylischen  a-Acetamido-f3-ketocarb-
oxylaten 17 in Gegenwart des Trost-Li-
ganden 18 optisch aktive y,0-ungesit-
tigte o-Aminoketone 19 mit bis zu
90% ee liefert (Schema 4).”! Die Enan-
tioselektivititen liefen sich durch Ein-
satz von Phenolderivaten als Additive
steigern.
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o 0
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o™ (5.0 Mol-%) R! &
2
R® NHAc [Pda(dba)skCHCI3 (2.5 Mol-%) R? NHAc
17 DCE, 1-Naphthol (50 Mol-%), RT 19

55-82% Ausbeute
71-90% ee

Schema 4. Decarboxylierung von allylischen a-
Acetamido-}-ketocarboxylaten. DCE=1,1-
Dichlorethen.

Trost und Xu suchten nach einer
Methode, um die Enolat-Alkylierung
unter neutralen Bedingungen und bei
niedrigen Enolatkonzentrationen aus-
fithren zu konnen und studierten hierfiir
die Palladium-katalysierte Decarboxy-
lierung von Allylenolcarbonaten (Sche-
ma 5).°! Unter optimierten Bedingun-
gen gelang es mit dem chiralen Ligan-
den 20, verschiedenste cyclische Sub-
strate wie 13 umzusetzen. Allgemein
wurden die monoalkylierten Ketone in
guten Ausbeuten (64-99%) und mit
hohen  Enantioselektivititen (76—
99 % ee) erhalten. Das Enolcarbonat
von 1-Tetralon, einem sehr héufig ver-
wendeten Substrat zur Synthese von
Ketonen mit tertidrem Kohlenstoffzen-
trum, erwies sich als problematisch, da
zum einen eine Racemisierung und zum
anderen eine Dialkylierung eintreten
kann. Nach Austausch des urspriingli-
chen Losungsmittels Toluol durch Di-
oxan lieBen sich jedoch hohe Ausbeuten
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Schema 5. Decarboxylierung von Allylenolcar-
bonaten unter Verwendung des Ligan-
den 20.

und Enantioselektivititen erzie-

len. Im weiteren Verlauf dieser 4

Studien erweiterten Trost und Xu
den Substratbereich auf acyclische
Carbonate 21.7") Dabei wurde eine
Reihe von acyclischen Ketonen 22
mit tertiirem Kohlenstoffzentrum
mit hohen Ausbeuten und Enan-
tioselektivitidten erhalten.

Stoltz und Mitarbeiter be-
schrieben eine katalytische enan-
tiokonvergente Synthese von cy-
clischen Ketonen mit quartirem
Stereozentrum ausgehend von
racemischen B-Ketocarboxylaten 23.[°
Mit dem Liganden 14 wurden mehrere
cyclische a-substituierte 2-Carboxy-
allylketone 23 unter Decarboxylierung
in guten Ausbeuten (80-99 %) und mit
hohen  Enantioselektivititen (81—
91 % ee) zu den Ketonen 24 umgesetzt
(Schema 6). Nakamura et al. verwende-
ten ein dhnliches katalytisches System
zur Decarboxylierung des o-Fluor-2-
carboxyallylketons 25.1  Allgemein
werden mit dieser Methode cyclische
Ketone mit hohen Enantioselektivitdten
erhalten (>85% ee), wihrend acycli-

2 0 14 (6.25 Mol-%) o
0/\/ - SN
R [Pdy(dba)g] (2.5 Mol-%) R
THF oder Et,0, 25-30°C
2 80-99% Ausbeute 24
81-91% ee
o O o}
= O/\/ 14 (6.25 Mol-%) o
E -
XN | [Pdy(dba)s] (2.5 Mol-%) F
o
25 THF, 22-25°C 26
82-96% Ausbeute
51-99% ee

PhS

Schema 6. Decarboxylierung von allylischen B-Ke-

tocarboxylaten.
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sche Ketone mit deutlich niedrigeren
Enantioselektivititen entstehen (51—
55% ee). Auch Stoltz und Mitarbeiter
setzten unter anderem ein o-Fluor-2-
carboxyallylcyclohexanon als Substrat
ein:® das Produkt wurde in 80% Aus-
beute und mit 91 % ee erhalten.

Trost et al. entwickelten eine effizi-
ente Synthese von vinylischen Thioes-
tern 28 und 30 durch Decarboxylierung
von Enolcarbonaten und (-Ketocarb-
oxylaten (Schema 7).'” Die erhaltenen
Produkte dienen als Vorstufen fiir v,y-
disubstituierte Cycloalkenone.

20 (6 Mol-%)

[Pd(dba)s]*CHCl3 (2.5 Mol-%)
THF oder Dioxan

91-100% Ausbeute
79-99% ee

20 (5.5 Mol-%)

[Pda(dba)s]*CHCly (2.5 Mol-%

) Phs
Dioxan, 23°C

30

65-98% Ausbeute
36-100% ee

Schema 7. Decarboxylierung von vinylischen Thioestern.

Die erfolgreiche Anwendung dieser
Palladium-katalysierten decarboxylie-
renden AAA in der Synthese zog aus-
fihrliche Untersuchungen des Reakti-
onsmechanismus nach sich. Da p-Keto-
carboxylate mit quartdren Stereozen-
tren (wie 23, 25 und 29) bereitwillig de-
carboxylierende  Allylierungen
gehen, kann angenommen werden, dass
die Decarboxylierung der C-C-Ver-
kniipfung vorausgeht und dass Keto-
nenolate als echte Intermediate auftre-
ten. In einer interessanten mechanisti-
schen Studie wurden deuteriummar-
kierte Substrate eingesetzt (Sche-
ma 8),"! und aus den Ergebnissen
wurde geschlossen, dass wéhrend
der Reaktion Ketonenolate in Lo-
sung vorliegen. Das zweifach deu-
terierte Carbonat 31a wurde Be-
dingungen der decarboxylierenden
Allylierung ausgesetzt. Es entstand
ein Gemisch zweier Produkte, bei
denen die Deuteriummarkierung
nahezu gleichméfig an den beiden
Enden der Allyleinheit verteilt war.
In einem Uberkreuzexperiment
wurden &dquimolare Anteile der

ein-
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Schema 8. Mechanistische Untersuchung mit deuteriummarkierten Enolcarbonaten 31a und b.

Carbonate 31a und 31b den gleichen
Reaktionsbedingungen ausgesetzt. Eine
NMR-spektroskopische Analyse des
Produkts zeigte wie erwartet einen
Deuteriumaustausch zwischen den En-
den der Allyleinheit. Ferner lie} eine
massenspektrometrische Analyse er-
kennen, dass alle sechs moglichen Pro-
dukte gebildet wurden, einschlieBlich
der Produkte der Uberkreuzreaktionen.
Aus den Ergebnissen wurde der Schluss
gezogen, dass unter den geltenden Re-
aktionsbedingungen ein achirales Keto-
nenolat 33 fiir einen gewissen Zeitraum
in Losung existieren muss.

Durch Palladium-katalysierte asym-
metrische allylische Alkylierung gelingt
es, verhdltnisméBig harte Nucleophile
wie Ketonenolate zu alkylieren, wenn
man die Allylgruppe und das Nucleophil
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iiber eine Molekiilkette direkt mitein-
ander verkniipft. Mit geeigneten chira-
len Liganden verlduft die Reaktion in
hohen Ausbeuten und mit exzellenter
Selektivitdt. Die Anwendung von neu-
tralen Reaktionsbedingungen und die
Moglichkeit, Produkte zu erhalten, die
durch die klassische allylische Tsuji-
Trost-Alkylierung nicht zugénglich sind,
machen den hier beschriebenen Reak-
tionstyp zu einer wertvollen Methode in
der organischen Synthese.!"!
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